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Abstract
We investigate static and dynamical ground-state properties of the two-impurity
Anderson model at half filling in the limit of vanishing impurity separation using
the dynamical density-matrix renormalization group method. In the weak-
coupling regime, we find a quantum phase transition as a function of inter-
impurity hopping driven by the charge degrees of freedom. For large values of
the local Coulomb repulsion, the transition is driven instead by a competition
between local and non-local magnetic correlations. We find evidence that, in
contrast to the usual phenomenological picture, it seems to be the bare effective
exchange interactions which trigger the observed transition.

1. Introduction

Although 40 years have passed since the discovery of the Kondo effect, it is still one of
the most interesting topics in condensed matter physics; it lies at the heart of understanding
strongly correlated electron systems [1]. The Kondo effect, which leads to the quenching of
an impurity spin, forms the basis of the physics of a single magnetic impurity embedded in
a metal. However, systems with more than one impurity are considerably more complicated
and present additional difficulties in a theoretical investigation. In particular, there are two
effects which compete against each other in multiple-impurity systems: the Kondo effect and
the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction. The RKKY exchange favours the
formation of non-local magnetic correlations; the Kondo effect, on the other hand, is based on
purely local magnetic correlations. The competition between the Kondo effect and the RKKY
interaction is thought to be the key mechanism to understanding the magnetic properties of the
heavy fermion materials [2]. The simplest systems which allow the study of this competition
are two-impurity models. Recently, such models have also attracted much attention in the
context of double quantum dots [3], which can be viewed as a direct experimental realization
of the two-impurity Kondo model.

Theoretically, the two-impurity Anderson model (TIAM) [4–16] and the two-impurity
Kondo model (TIKM) [17–34] have been extensively studied with various methods;
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nevertheless, their physical properties at low temperature are not yet well understood. In
particular, the situation is far from clear concerning dynamical properties because only a
few methods are able to reliably calculate the dynamical properties of such models due to
their complexity. So far, the spectral density has been calculated using perturbation theory
(PT) [11, 14] and the numerical renormalization group (NRG) [22], but the results are not
fully satisfactory. The PT provides an explicatory and accurate picture of quantum impurity
dynamics only in certain limiting cases. While the NRG can determine the low-energy
dynamics of quantum impurity models almost exactly, it is less precise at high energy.

Recently, the dynamical density-matrix renormalization group (DDMRG) method [35]
was applied to the single-impurity Anderson model (SIAM) and it was shown that the method
can calculate the impurity spectral density with good resolution for all frequencies and coupling
strengths [36, 37]. This method can be extended to investigate the dynamics of a two-impurity
problem without difficulty. Here we study the spectral density of the TIAM using the DDMRG
method. Since the parameter space of the TIAM is rather large, for simplicity we focus here
on the limit of small inter-impurity distance. This simplification does not change the substance
of the problem and is quite likely relevant for typical experimental situations, e.g., clusters of
magnetic atoms on metal surfaces or multiple-quantum-dot systems.

The aim of this paper is to demonstrate the efficiency of the DDMRG for the two-impurity
system and to discuss the dynamical properties of the TIAM in the limit of zero impurity
distance as the first step of a more general DDMRG study. The organization of this paper is
as follows. In section 2, the model Hamiltonian for the TIAM is introduced. In section 3, we
transform the Hamiltonian for an efficient treatment with the (D)DMRG and define even- and
odd-parity orbitals of coupled impurities. In section 4, we show the static and the dynamic
properties calculated with the (D)DMRG method. The conclusion and discussion follow in
section 5.

2. Model

The Hamiltonian for two impurities placed at Ri (i = 1, 2) is written as

Ĥ =
∑

kσ

εk f̂ †
kσ f̂kσ +

∑

ikσ

Vk(eik·Ri f̂ †
kσ d̂iσ + h.c.)

+ U
∑

i=1,2

(n̂d
i↑ − µ)(n̂d

i↓ − µ) + t12

∑

σ

(d̂†
1σ d̂2σ + h.c.) (1)

where d̂†
iσ (d̂iσ ) creates (annihilates) an electron with spin σ = ↑,↓ in a local level (the impurity

site i ), n̂d
iσ = d̂†

iσ d̂iσ and f̂ †
kσ ( f̂kσ ) creates (annihilates) an electron with spin σ in an eigenstate

of the (noninteracting) host band with dispersion εk. The sum over k runs over all states of the
host band. The hybridization between the local impurity state and the delocalized band state
k is given by the positive couplings Vk. Electrons in the local level are subject to a Coulomb
repulsion U . In this paper, the energy level of impurity sites is set by µ = −U/2. Under this
assumption, we can map our model to the two-impurity Kondo model in the strong-coupling
limit. We also set R1 − R2 = 0 and replace k → k for simplicity. Thus, our model depends
on the parameter U and the hybridization function

�(ω) = π
∑

k

|Vk |2δ(ω − εk) � 0. (2)

For a symmetric hybridization function,�(ω) = �(−ω), the TIAM is particle–hole symmetric
for t12 = 0.

Since, for the time being, we are interested in understanding the qualitative aspects of
the model, it is convenient to choose a flat-band host density as the hybridization function.
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In addition, the flat-band case of the SIAM is very well understood [1] and is thus helpful to
explain features found in our model. We also take the host bandwidth to be much larger than any
other bare energy scale and use a hybridization function which is constant, �(ω) = �0. Our
goal is then to compute the spectral density in the relevant energy window −W/2 < ω < W/2
with W/2 > U/2,�0. For all numerical results presented here, the energy scale is set by
�0 = 1/π .

3. Method

In this work, we employ the DMRG technique [39], which is a reliable numerical method
for one-dimensional systems. We use the standard DMRG method to calculate ground-state
properties and the DDMRG method [35] to calculate dynamical properties. In order to carry
out our calculations, we consider N + 2 electrons in a system consisting of N noninteracting
bath sites (N even) and two impurity sites. The electron density is 〈n↑〉 = 〈n↓〉 = N/2 + 1.

The (D)DMRG calculations can be performed on finite lattices only, i.e., we must discretize
the host band and carry out (D)DMRG calculations for a finite number N of host band
eigenstates corresponding to energies εk (k = 1, . . . , N), and then extrapolate the results
to a continuous host band (N → ∞) if needed. Choosing a discretization of the host band,
i.e., selecting the N band state energies εk , should be done appropriately depending on what
is to be obtained.

The Hamiltonian (1) is, however, somewhat unsuited for a DMRG treatment because it
includes hopping terms that are long range. For example, the system size is limited to N � 60
for typical calculations even when several thousand density-matrix eigenstates are kept in
the DMRG procedure, the maximum possible on current workstations. Therefore, we first
transform the Hamiltonian (1) into a linear chain with nearest-neighbour hopping only,

Ĥ = V
∑

iσ

(ĉ†
0σ d̂iσ + d̂†

σ ĉ0σ ) +
∑

jσ

a j ĉ
†
jσ ĉ jσ +

∑

jσ

λ j (ĉ
†
jσ ĉ j+1σ + ĉ†

j+1σ ĉ jσ )

+ U
∑

i=1,2

(n̂d
i↑ − 1

2 )(n̂d
i↓ − 1

2 ) + t12

∑

σ

(d̂†
1σ d̂2σ + h.c.). (3)

The new fermion operators ĉ jσ correspond to electronic states in the host band and are related
to the original representation by a canonical transformation

ĉ jσ =
∑

k

M jk f̂kσ . (4)

The orthogonal matrix M jk , the diagonal terms a j , and the nearest-neighbour hopping terms
λ j are calculated using the Lanczos algorithm for tridiagonalizing a symmetric matrix starting
from the initial vector M1,k = Vk/V with V 2 = ∑

k V 2
k . For a hybridization function (2)

symmetric about ω = 0, the diagonal terms a j vanish. The Hamiltonian (3) describes two
impurities coupled to one end of a one-dimensional chain representing the host band states
(see figure 1). This transformation enables us to handle a system with up to N ∼ O(200) bath
states using the (D)DMRG method.

Furthermore, for efficient treatment, we introduce even- ( p = e) and odd- (p = o) parity
impurity orbitals dpσ = (d1σ ± d2σ )/

√
2 as in [19]. With R1 − R2 = 0, the Hamiltonian (1)

is transformed to

Ĥ = Ĥ0 + ĤU (5)

Ĥ0 = V
∑

σ

(d̂†
eσ ĉ0σ + h.c.) +

∑

jσ

λ j (ĉ
†
jσ ĉ j+1σ + h.c.) + t12

∑

σ

(d̂†
eσ d̂eσ − d̂†

oσ d̂oσ ) (6)

ĤU = U

2
[(n̂e↑ + n̂o↑ − 1)(n̂e↓ + n̂o↓ − 1) + (d̂†

e↑d̂o↑ + d̂†
o↑d̂e↑)(d̂†

e↓d̂o↓ + d̂†
o↓d̂e↓)], (7)
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Figure 1. One-dimensional lattice configuration for applying the DMRG algorithm to the two-
impurity problem. The solid circles denote the impurity sites and the open circles denote the host
band.

where n̂e(o)σ = d̂†
e(o)σ d̂e(o)σ . Note that only the even-parity orbital hybridizes with the

noninteracting bath states directly. When U = 0, the even- and odd-parity orbitals are
completely separate. In our model, they will be mixed only via the Coulomb interaction.

4. Results

4.1. Static properties

We begin our discussion with some static properties of the system, namely, the electron density
at the impurities and the spin–spin correlation function between the impurities, calculated
with the standard DMRG method. Here we apply a logarithmic discretization scheme of
the host band, εk = (W/2)�−k (with � > 1 and k = 1, 2, . . . , N/2), as usually used in
Wilson’s renormalization group method [38], because we are interested in the case of large host
bandwidth as well as in having dense bath states around the chemical potential for quantitative
accuracy. Typically, we use N = 38 bath states with � = 1.5 and W = 100π�0 and keep
m = 2000 density-matrix eigenstates in the DMRG procedure. In some cases, systems with
up to N = 58 and W = 1000π�0 are used to extrapolate the results to W → ∞.

4.1.1. Electron density at the impurity. The average electron densities 〈n̂e〉 and 〈n̂o〉 for even-
and odd-parity orbitals of coupled impurities, respectively, are displayed in figures 2(a) and (b)
for different values of U as a function of t12. Since the two-impurity sites are equivalent, we
have 〈n̂1〉 = 〈n̂2〉 = (〈n̂e〉 + 〈n̂o〉

)
/2. Note that 〈n̂1〉

(〈n̂2〉
)

can take values between 0 and
2 due to the charge degrees of freedom at the impurity sites, in contrast to the two-impurity
Kondo model for which 〈n̂1〉 = 〈n̂2〉 = 1 always.

When t12 = 0, 〈n̂e〉 = 〈n̂o〉 = 1 for all interaction strengths due to particle–hole symmetry.
The local densities are drastically affected by t12. We find a discontinuous transition at a critical
value t12 = t12,c which is dependent on U . The critical value t12,c is zero at U = 0 and becomes
larger with increasing U . In the large U limit, it saturates at t12,c ∼ π�0. We show the critical
value t12,c as a function of U for W → ∞ in the inset of figure 2(c).

At U = 0, 〈n̂o〉 drops to zero for infinitesimally small t12 (<0). In this limit, there is no
hybridization with the conduction band and no coupling to the even-parity level, i.e., the odd-
parity orbital forms a completely local state at the Fermi level εF if t12 = 0. An infinitesimally
small t12 shifts the state above εF, i.e., t12,c = 0+. For small but finite U , the situation is
similar and the transition is caused by the competition between t12 and U . At t12 = 0, the
odd-parity orbital is split by the Coulomb interaction (see equation (7)) into two states with
energy difference ∼U/2, the lower and the upper Hubbard band (we call them the LHB and
the UHB, respectively) located at ω ≈ ±U/4. A finite t12 has the effect of shifting the LHB
to higher energies by |t12|. The odd-parity orbital is occupied by one electron if the LHB is
below εF and almost vacant if the LHB is above εF. This leads to t12,c ∼ U/4 and a large
discontinuity (∼1) of 〈n̂o〉 at t12,c. This anticipated behaviour is in fact observed in our DMRG
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Figure 2. Local density on the even- (a) and odd- (b) parity orbitals of the coupled impurities as a
function of t12 for several U values. (c) Spin–spin correlation function as a function of t12 and U .
Inset: the critical values of the transition, t12,c, as a function of U . The dashed lines correspond to
t12,c = U/4 and t12,c = 1.13 (see text).

results. As U increases, the odd-parity orbital begins to hybridize indirectly with the host
band via the interaction term (7). The discontinuity, therefore, becomes smaller and goes to
zero as U → ∞. Moreover, we find that t12,c has almost no U -dependence in the large-U
regime. This implies that the physics behind the transition for large U is different from the
competition between t12 and U at small U . Before we discuss a possible mechanism in the
next paragraph, let us briefly comment on the behaviour of the even-parity orbital. For all U
values, 〈n̂e〉 increases slowly as a function of t12 because the even-parity orbital hybridizes
directly with the host band, thus experiencing a strong broadening. Hence, the discontinuity
of 〈n̂e〉 at t12 = t12,c is smaller than that of 〈n̂o〉. We can also see the largest discontinuity,
which means that the charge fluctuation on the even-parity orbital is largest, for intermediate U
values (U ∼ 5π�0). We also note that 〈n̂o〉 = 1 independent of U below t12,c, and 〈n̂o〉 → 0
and 〈n̂e〉 → 2 as t12 → ∞ for finite U .

4.1.2. Spin–spin correlation between impurities. We now investigate the spin–spin
correlation between the two impurities, 〈
S1 · 
S2〉. The results are shown in figure 2(c) as
a function of t12 for different values of U . Before we discuss the results, let us first identify the
different types of magnetic interactions present in our model. First, we have the c–f exchange
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interaction Jcf , which is the antiferromagnetic interaction between an electron on the impurity
sites and conduction electrons. For a single impurity, Jcf leads to the Kondo effect and a
local spin singlet as the ground state. Within the standard Schrieffer–Wolff mapping, the
value for Jcf is given by Jcf = 8�0/Ueff , where Ueff is the effective Coulomb interaction and
the impurities are both occupied by one electron. The c–f exchange is effective only when
an electron is localized on the impurity so that Ueff = U/2 and Jcf = 16�0/U . Second,
the conduction electrons mediate the RKKY interaction JRKKY. For our particular set-up,
we obtain a ferromagnetic interaction between two electrons on the impurity sites. As usual,
JRKKY is obtained as second-order process, i.e., JRKKY ∼ J 2

cf ∼ O(1/U 2). Third, the model
exhibits a direct exchange interaction Jex due to the coupling t12, which is an antiferromagnetic
interaction and is given by the standard expression Jex = 4t2

12/U .
We expect that for t12 < t12,c ferromagnetic correlations due to the RKKY interaction

are dominant, i.e., 〈
S1 · 
S2〉 > 0. On the other hand, when t12 > t12,c, antiferromagnetic
correlations due to the exchange interaction are stronger, i.e., 〈
S1 · 
S2〉 < 0. Such a transition
from ferromagnetic to antiferromagnetic correlations at t12,c is in fact found at all interaction
strengths, as can be seen in figure 2(c). The absolute value of 〈
S1 · 
S2〉 increases with increasing
U and reaches the maximum possible value as U → ∞, which means that one electron is
localized on each impurity in the U → ∞ limit.

Let us now consider the U -dependence of the critical value t12,c. The transition is driven
by the charge degrees of freedom in the weak-coupling regime. However, the spin degrees of
freedom play an essential role in the strong-coupling regime. Taking into account that the spin–
spin correlations between the impurity sites change from ferromagnetic to antiferromagnetic at
t12,c, we may expect that the competition between the RKKY and direct exchange interactions
is the origin of the transition. If we take Jex = JRKKY as the criterion for the occurrence of
the transition, we obtain t12,c ∼ O(1/

√
U ). Thus, t12,c would go to zero as U → ∞, which is

obviously inconsistent with the DMRG results, which show almost constant t12,c as a function
of U .

Up to now, we have not taken into account Jcf , which leads to a competition between
the formation of local Kondo and non-local singlets, offering a quite different mechanism
for the transition. In this case, the criterion to obtain t12,c is Jcf = Jex, which gives
t12,c = √

4/π ∼ 1.13. This result is indeed consistent with our findings. Thus, the transition in
the strong-coupling regime can be interpreted as competition between local singlet formation
due to the Kondo effect and non-local singlet formation due to the direct exchange introduced
by t12. Note, however, that, in contrast to the general folklore, the boundary is not set by
TK(Jcf) = Jex, but by the direct comparison of the bare energy scales. We also find that the
total spin is S = 1 for t12 < t12,c and S = 0 for t12 > t12,c.

4.2. Dynamical properties

In this section, we study the spectral density for impurities in the TIAM. The impurity one-
particle Green function for even- and odd-parity orbitals can be written as

Gpσ (ω) =
〈
d̂†

pσ

1

Ĥ − E0 + ω − iη
d̂pσ

〉
+

〈
d̂pσ

1

E0 − Ĥ + ω + iη
d̂†

pσ

〉
(8)

(η → 0+), where E0 is the ground-state energy and 〈· · ·〉 represents a ground-state expectation
value. The impurity spectral density for each parity is then obtained as

Dpσ (ω) = − 1

π
sgn(ω) Im Gpσ (ω) = Apσ (ω) + Bpσ (ω) (9)



Spectral density of the two-impurity Anderson model 987

with

Apσ (ω � 0) = lim
η→0

〈
d̂†

pσ

η

π[(Ĥ − E0 + ω)2 + η2]
d̂pσ

〉
(10)

Bpσ (ω � 0) = lim
η→0

〈
d̂pσ

η

π[(Ĥ − E0 − ω)2 + η2]
d̂†

pσ

〉
(11)

and Apσ (ω � 0) = Bpσ (ω � 0) = 0. The spectral density fulfils the sum rule
∫ ∞

−∞
Dpσ (ω) dω = 1. (12)

Note that the spectral densities for both impurities are the same, i.e., D1σ (ω) = D2σ (ω), and
are equal to [Doσ (ω) + Deσ (ω)]/2.

The standard DMRG algorithm [39, 40] can be used to calculate the ground-state properties
as shown in the last section. In particular, the ground-state wavefunction |
0〉 and the ground-
state energy E0 can readily be obtained. To compute dynamic properties such as the impurity
Green’s function (8) we use the DDMRG [35]. This approach is based on a variational principle.
One can easily show that for η > 0 and fixed frequency ω the minimum of the functional

W (
) = 〈
|(E0 + ω − Ĥ)2 + η2|
〉 + η〈
0|d̂pσ |
〉 + η〈
|d̂†
pσ |
0〉 (13)

with respect to all quantum states |
〉 is

W (
min) = 〈
0|d̂pσ

−η2

(E0 + ω − Ĥ)2 + η2
d̂†

pσ |
0〉. (14)

The functional minimum is related to the convolution of the spectral density (11) with a Lorentz
distribution of width η by

W (
min) = −πηBη
pσ (ω). (15)

A similar result is obtained for the spectral density (10) if one substitutes d̂pσ for d̂†
pσ , −ω for

ω and Aη
pσ (ω) for Bη

pσ (ω) in the above equations.
The DDMRG method consists essentially of minimizing the functional (13) numerically

using the standard DMRG algorithm. Thus, the DDMRG provides the spectral densities
Aη

pσ (ω) and Bη
pσ (ω) for a finite broadening η. The full spectral density (9) convolved with the

Lorentz distribution

Dη
pσ (ω) =

∫ ∞

−∞
dω′ Dpσ (ω′)

η

π[(ω − ω′)2 + η2]
(16)

is given by the sum of Aη
pσ (ω) and Bη

pσ (ω). The real part of the Green’s function can be
calculated with no additional computational cost but is generally less accurate. The necessary
broadening of spectral functions in DDMRG calculations is actually very useful for studying
continuous spectra or for doing a finite-size scaling analysis [35].

What we really would like to obtain is the spectral density in the η = 0 limit. This can
be done by carrying out a deconvolution of the DDMRG data [36]. In theory, a deconvolution
amounts to solving (16) for Dpσ (ω) using the DDMRG data on the left-hand side. We also
know that the broadened spectral density of the impurity system on an infinite lattice (N → ∞)
is usually almost identical to the spectral density of the discretized impurity system (N < ∞)
if η � �ε. Therefore, one can make the approximation that the DDMRG data for Dη

pσ (ω)

describes the broadened spectral density for N → ∞ and can then solve (16) approximately
under the condition that Dpσ (ω) is the exact spectral density of the TIAM. For instance, one can
require that Dpσ (ω) is a continuous and relatively smooth function. To obtain quantitatively
accurate spectra after deconvolution, we need to take η smaller than the width of the spectra
when η = 0.
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Figure 3. Spectral density at U = 0 and W = 20π�0. The open circles denote Deσ (ω) calculated
with a constant host band discretization for N = 59, �ε ≈ 0.34π�0, and η = 0.5π�0, then
deconvolved. Solid circles denote Deσ (ω) calculated with variable discretization �ε ≈ 0.067π�0
and η = 0.1π�0 around the peak. Solid and dashed lines are the exact solutions (17) with
broadening η = 0.1π�0 and (18) without broadening, respectively.

4.2.1. Noninteracting case. The spectral density at U = 0 can be calculated exactly and
provides a good test to demonstrate the accuracy of our method. The exact spectral density
for the odd-parity orbital is a a δ-function at ω = −t12

Do(ω) = δ(ω + t12), (17)

while for the even-parity orbital we obtain a Lorentzian of width 2�0 centred at ω = t12

De(ω) = 2�0

π[(ω − t12)2 + (2�0)2]
. (18)

In figure 3, we show the spectral density calculated with the DDMRG for U = 0. On the
scale of figure 3, there is no visible difference between our numerical results and the exact
results. The deconvolution technique is not useful for obtaining a divergent function such as a
δ-function, so we introduce a finite broadening η = 0.1π�0 into equation (17) and compare it
to our ‘bare’ DDMRG spectra convolved with same η. Note that the local Coulomb interaction
U is always treated numerically exactly in the density-matrix renormalization and thus does
not affect the accuracy of the method directly.

4.2.2. Weak-coupling regime. In the weak-coupling regime (U � 4π�0), the physical
properties are still similar to those of the noninteracting case. The spectral density of the
impurities calculated with the DDMRG for t12/�0 = 0, 0.15π , and 0.25π at U = π�0 is
shown in figure 4. The critical coupling t12,c is 0.205π�0. Let us first look at the spectrum for
the even-parity orbital, Deσ (ω). At t12 = 0 (see figure 4(a)), Deσ (ω) is basically a Lorentzian of
width ∼2�0 centred at ω = 0, but there appear small shoulders around ω ∼ ±0.8π�0(∼ U)

and ω ∼ ±1.8π�0(∼2U) due to the Coulomb interaction (7). When t12 increases, the central
peak is shifted towards lower energies by |t12| while maintaining its shape (see figures 4(b)
and (c)). This is consistent with the gradual increase of the local density on the even-parity
orbital 〈n̂e〉 as a function of t12 and also with the small discontinuity at t12,c, as shown in
figure 2(a). We next turn to the spectrum for the odd-parity orbital, Doσ (ω). As long as
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Figure 4. Spectral density of the coupled impurities for the odd-parity orbital Doσ (ω) and for
the even-parity orbital Deσ (ω) with (a) t12 = 0, (b) t12 = 0.15π�0, and (c) t12 = 0.25π�0 at
U = π�0 and W = 20π�0. Dashed lines denote Deσ (ω) calculated with a constant host band
discretization for N = 58, �ε ≈ 0.34π�0, and η = 0.5π�0, then deconvolved. Solid lines denote
Doσ (ω) calculated with a variable discretization for N = 118 (N = 70), 0.01π � �ε/�0 � 0.45π

(0.0033π � �ε/�0 � 1.98π ) and a constant broadening η = 0.02π�0 (η = 0.005π�0) for t12 =
0 and 0.15π�0 (0.25π�0), then deconvolved. Insets: expanded view around the Fermi level ω = 0.

U = 0, this orbital has no direct hybridization with the host band, so that Doσ (ω) consists
of a localized state, i.e., a single δ-function peak. When a small U(�π�0) is introduced at
t12 = 0, this peak splits into two peaks located around ∼ ± U/4 due to the effective repulsion
on the odd-parity orbital Ueff = U/2 (see equation (7)). They correspond to the LHB and
the UHB. In other words, the odd-parity orbital is half filled and a Mott–Hubbard gap opens.
The peaks are still very sharp but are no longer exact δ-functions, as we can see in figure 4(a),
because the odd-parity orbital couples ‘indirectly’ to the host band via the even-parity orbital.
As t12 increases, the two peaks are shifted towards higher energies by |t12|, but their separation
remains ∼U/2. The LHB and UHB become sharper (broader) while retaining their respective
weights. In addition, no spectral weight is transferred to the gap. When the LHB reaches the
Fermi level εF (ω = 0) at t12 = t12,c (∼U/4), the transition occurs. When t12 > t12,c (see
figure 4(c)), only one peak is present, and it is above ω = 0 and is very sharp. Actually, there
must be some spectral weight below ω = 0 because 〈n̂o〉 is not exactly zero (see figure 2(b)).
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Figure 5. Spectral density of the coupled impurities for the odd-parity orbital Doσ (ω) and for the
even-parity orbital Deσ (ω) with (a) t12 = 0, (b) t12 = 0.6π�0, and (c) t12 = π�0 at U = 15π�0
and W = 40π�0. Dashed lines denote Deσ (ω) calculated with a variable discretization for
N = 94, �ε ≈ 0.0013π�0, and η = 0.002π�0, then deconvolved. Solid lines denote Doσ (ω)

calculated with a variable discretization for N = 94, 0.0068π � �ε/�0 � 1.98π and a constant
broadening η = 0.01π�0, then deconvolved. Insets: expanded view around the Fermi level ω = 0.

We therefore find that the odd-parity orbital behaves as a nearly localized state for all t12 and
that the charge degrees of freedom in the odd-parity orbital play a crucial role for the transition.

4.2.3. Strong-coupling regime. We now consider the spectral density in the strong-coupling
regime (U  4π�0), which corresponds to the so-called Kondo regime in the SIAM. For the
TIAM, however, the situation is more complex due to competing interactions, i.e., the RKKY
interaction, the Kondo (or c–f exchange) effect, and the exchange interaction between impurity
sites. In figure 5, we show the spectral density calculated with the DDMRG for t12 = 0,
0.6π�0, and π�0 at U = 15π�0. The critical inter-impurity hopping t12,c ∼ 0.8π�0 is
slightly smaller than that obtained in section 2 because the calculations were done for a finite
host bandwidth here. Let us first look at the even-parity spectral density Deσ (ω). Below
t12,c, we can see a sharp peak at ω = 0 in Deσ (ω), which satisfies the Friedel sum rule
Deσ (ω = 0) = 1/(2π�0). This means that the conduction electrons form a spin-singlet
(Kondo) state with electrons in the even-parity orbital. The width of this peak at ω = 0
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becomes smaller exponentially with increasing U . We can thus state that the properties of
Deσ (ω) below t12,c are similar to that of the SIAM which is characterized by the Abrikosov–
Suhl resonance at ω = 0 and the Hubbard satellites around ω ≈ ±U/2. Moreover, we notice
that the physics of the TIAM is quite different from that of the two-impurity Kondo model,
where no Kondo effect is observed [32], at least for the case of equivalent impurities. Note
also that in the TIAM states with only one electron on the two impurity sites can still have a
large weight (∼3% for U = 15π�0) in the eigenvector of the ground-state even in the Kondo
regime, in contrast to the two-impurity Kondo model.

When we increase t12, the shape of Deσ (ω) is hardly changed and only a weak transfer of
spectral weight from above εF to below εF occurs, consistent with the behaviour of 〈n̂e〉. As
long as t12 is smaller than t12,c, the quasi-particle peak stays pinned at ω = 0 and maintains its
height (1/(π�0)), while the Hubbard satellites stay located at |ω| < U/2 with width >2�0.
Above t12,c, on the other hand, the Kondo peak vanishes. The local spin is now screened due
to the formation of a non-local singlet between the impurities due to the dominant exchange
interaction; i.e., the scattering channels leading to the Abrikosov–Suhl resonance are not active
any more. Simultaneously, the ‘effective’ hybridization between the host band and the even-
parity orbital becomes weaker so that the width of the Hubbard satellites becomes narrower.
Our numerical results indicate that the Hubbard satellites turn into Lorentzians with width 2�0

and weight 1/2 located at |ω| = U/2 in the limit of t12 → ∞ and U → ∞.
Next, let us turn to the odd-parity spectral density Doσ (ω). At t12 = 0, we find four

peaks. The two prominent peaks located at ω ≈ ±7.5 (= ± π�0U/2) can be identified with
the Hubbard bands of the electrons localized in this orbital. Since no direct hybridization to
the band states exists, these peaks are sharper than the corresponding ones in Deσ (ω), i.e., the
broadening is introduced indirectly via the Coulomb interaction. Rather more interesting is
the appearance of a structure at the Fermi energy consisting of two narrow peaks separated by
a gap � ∼ 0.36 ≈ Jcf = 16/(πU) ≈ 0.34 for t12 = 0. As t12 increases, this feature and, in
particular, the gap prevails, although its size decreases (see insets to figure 5). Note, however,
that the gap edges remain symmetric with respect to the Fermi energy, while the spectral weight
is larger below the Fermi level as long as t12 < t12,c. For t12 > t12,c, a rearrangement of spectral
weight from below to above the Fermi energy takes place, while the size of the gap does not
change noticeably.

We interpret this structure as a replica of the Kondo resonance induced indirectly by the
interactions between the even and odd channels. However, adding or removing electrons in
the odd-parity orbital would at least break one ‘Kondo bond’ in the even-parity channel, i.e.,
cost an energy ∼Jcf , explaining the appearance and size of the gap for t12 = 0. Note that, in
contrast to the weak-coupling regime, this explanation connects the gap to the spin rather than
to the charge degrees of freedom. As t12 increases, the gap becomes smaller because the direct
exchange interaction Jex between the impurity sites competes with the Kondo effect,effectively
reducing the local moment, which is screened by the band states, and hence the corresponding
spin gap. However, we find � > Jcf − Jex, which would be the naive expectation, because the
formation of dynamic spin correlations between the impurities due to Jex introduces a further
contribution to �. Thus, the gap will always be finite and develops a minimum close to t12,c,
where Jcf = Jex. For t12 > t12,c, the impurities form a non-local spin singlet and the spin gap
will scale with Jex, i.e., increase again slowly with increasing t12. An estimate for t12 � t12,c

yields � ∼ Jex = 4t2
12/U ≈ 0.26, which is in rough agreement with the numerical value

� ≈ 0.16 obtained from figure 5(c).

4.2.4. Intermediate-coupling regime. Finally, we present the spectral function for U ≈
4π�0, i.e., in the intermediate-coupling regime. Note that from the point of view of the
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Figure 6. Spectral density of the coupled impurities for the odd-parity orbital Doσ (ω) and for the
even-parity orbital Deσ (ω) with (a) t12 = 0, (b) t12 = 0.5π�0, and (c) t12 = π�0 at U = 5π�0 and
W = 20π�0. Dashed lines denote Deσ (ω) calculated with a constant discretization for N = 58,
�ε ≈ 0.34π�0, and η = 0.5π�0, then deconvolved. Solid lines denote Doσ (ω) calculated with
a variable discretization for N = 118, 0.01π � �ε/�0 � 1.45π , and a constant broadening
η = 0.02π�0, then deconvolved. Insets: expanded view around the Fermi level ω = 0.

SIAM this value already resides within the ‘strong-coupling’ regime delimited by U
π�0

= 2
(the effective hybridization for the even-parity channel is 2�0). In figure 6, we show the
spectral density calculated with the DDMRG for t12 = 0, 0.5π�0, and π�0 at U = 5π�0.
The transition here occurs at t12,c ∼ 0.65π�0. As already mentioned above, the even-parity
spectral density Deσ (ω) below t12,c resembles that of the SIAM. The central peak at ω = 0 starts
to become narrower and its spectral weight is increasingly transferred to the high-energy range
with increasing U . However, the three-peak structure typical of the strong-coupling regime
is not yet fully developed; the Hubbard bands appear only as visible but shallow shoulders
around ω ∼ ±U/2. Moreover, in contrast to the SIAM, the central peak here does not fully
reach the Friedel limit, its height being slightly lower than 1/π . This behaviour was also
seen in previous NRG studies [22] and in the mean-field approach [23], and is connected to
the non-local magnetic correlations induced by the RKKY exchange, which is stronger for
smaller U . As in the strong-coupling regime, Deσ (ω) hardly changes with increasing t12 until
t12,c is reached, where a dramatic redistribution of spectral weight connected to the formation
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of a non-local singlet due to the direct exchange introduced by t12 appears. In particular, as in
the strong-coupling regime, the Kondo peak has vanished completely.

The behaviour of the odd-parity channel in figure 6 is also similar to the strong-coupling
limit. We again find a gap in the spectrum, which remains symmetric about ω = 0 for all t12,
and observe a similar but much more pronounced change in the distribution of spectral weight,
as in figure 5. The gap, too, initially decreases until t12,c is reached and then increases again.
We believe that the physics behind this behaviour is essentially the same as in the U → ∞ limit,
although the energy scales associated with the spin gaps induced by the different exchange
mechanism in particular now cannot be written down explicitly. However, we expect them to
be larger than in the limit of large U , which is indeed what we observe in figure 6.

5. Conclusion

In this paper, we have presented static and dynamical properties of the two-impurity Anderson
model at half filling for vanishing impurity separation. In this limit, the otherwise rather
complex model becomes considerably simpler, nevertheless retaining most of its interesting
physical aspects. In particular, the competition between different types of magnetic correlations
such as Kondo, RKKY and superexchange is preserved. We employ the (dynamical) density-
matrix renormalization method to calculate static properties (filling,magnetic correlations) and
one-particle spectra. For the latter, we obtain results that are convoluted with a Lorentzian,
which we, however, can deconvolute with good accuracy, as demonstrated for the exactly
solvable case U = 0.

While this model can, in fact, easily be studied by e.g., Wilson’s NRG, an evident advantage
of the DDMRG is that one obtains an accurate description of spectral features on all energy
scales at the cost of the resolution of exponentially small structures. In the NRG, on the other
hand, exponentially small scales can be readily resolved, however, at the expense of accuracy
at intermediate and high energies. Since we are interested here in describing both the features
emerging at intermediate (∼JRKKY, Jex) and high energy scales (Hubbard bands ∼U/2) as
well as at a possible small Kondo scale, we feel that the DDMRG is more useful for the present
study.

In the weak-coupling regime, U < 2π�0, we observe a transition between a situation with
weakly ferromagnetically coupled impurity spins and a situation with weak antiferromagnetic
correlations as function of inter-impurity hopping t12, as is apparent from the behaviour of
〈
S1 · 
S2〉 in figure 2(c). From the spectral functions discussed in figure 4, we can furthermore
infer that this transition is primarily driven by the charge degrees of freedom in the odd-parity
channel of the two-impurity system. For U > 2π�0, on the other hand, the transition is into a
state with rather strong antiferromagnetic correlations. At the same time, the behaviour of the
spectral functions, in particular in the odd-parity channel, changes considerably. Although the
transition is still accompanied by a change in occupancy in the odd-parity channel, this change
is visibly reduced. Furthermore, the gap in the odd-parity spectrum is always pinned to the
Fermi energy and is of the size of the typical magnetic exchange interactions, which points to
the spin degrees of freedom as the driving force of the transition. Finally, the existence of a
Kondo peak in the even-parity spectrum for t12 < t12,c, which abruptly vanishes for t12 > t12,c,
must be taken as evidence that the transition is in fact driven by the competition between Kondo
and direct exchange in this regime. It is quite important to note that the actual transition occurs
at the point where Jcf = Jex and not when TK(Jcf) = Jex, and also that the energy scales
appearing in the spectra in figures 5 and 6 are in fact related to these ‘intermediate’ quantities
rather than the actually much smaller Kondo scale.
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Of course, the current investigation is restricted to a special limit of the TIAM, namely, that
of vanishing impurity separation. The results for this case clearly show that a more thorough
investigation of this model is still necessary. In particular, we believe that such an investigation
must carefully study the relation between the different energy scales inherent to the problem.
The method to study the TIAM should be chosen so that it can at least resolve accurately
intermediate, i.e., of the order of the effective exchange interactions, and low energy scales,
i.e., of the order of the Kondo scale. Evidently, we cannot expect that any method can handle
both regimes equally well when the energy scale of the latter is exponentially small, but we
believe that the DDMRG can at least treat the intermediate situation when TK � Jex but is
still resolvable with the method.
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